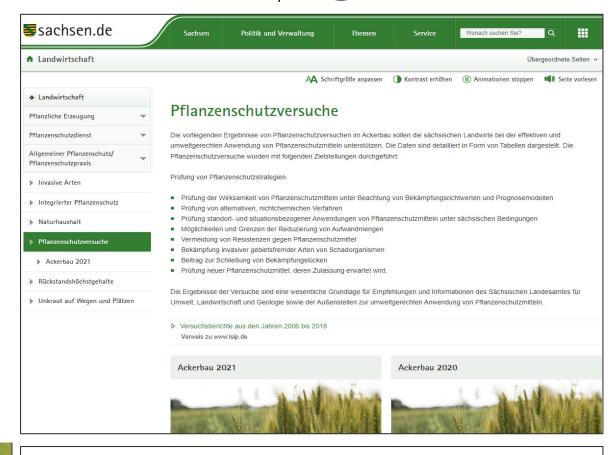
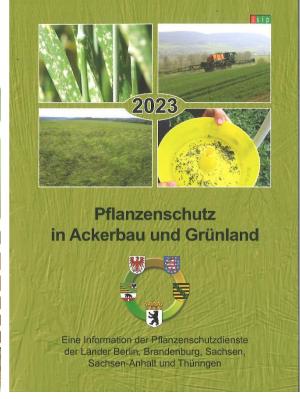

Biologie, Resistenzstatus und Bekämpfungsmöglichkeiten von Weidelgras-Durchwuchs im Ackerbau

Ewa Meinlschmidt, Landesamt für Umwelt, Landwirtschaft und Geologie, Referat Pflanzenschutz



LOP DAS FACHMAGAZIN FÜR DEN PROFESSIONELLEN PFLANZENBAU

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE



- Secondary 7	1	Resistante Biotypen nach HRAC-Gr	uppe		Ě
Pflanzenart	-1	2	5	15	mil
Ungräser					
Ackerfuchs- schwanz	Clethodes, Clothratop, Cyc- loxydes, Fencou- prop, Piscasados, Propaguizatop	Flagyrudluron, Foremudluron, Iodinidluron, Mesonabluron, Norsulluron, Proposycarbusons, Pyroxidam	Chlorioluron		je.
Windhalm	Pinosadon, Propaquissíop	Flapyrudluron, Foremulluron, todosulluron, Menosulluron, Proposycarbasone, Pyrossulam	Chlortoluron	28	ju
Weidelgras- arten	Pinousden, Propaquitalop, Cydoxydin	Todosulfuron, Mesonalfuron, Pyroxudam		Flufe- need:	ja.
Highmerhine	52	Nicovaliuson	(-)	3.8	resin
Taubs: Troops	-	Todosulfuron, Mesenulfuron, Propoxycarbusene, Pyroxulam		18	rete
Unkräuter					
Echte Kamilie	12 12 13	Tribenuran	1+5	-	neir
Geruchi, Kamille	-	Tribertunan	- 100	0.00	nide
		Amidoudlone tedandions			

»Pflanzenschutz in Ackerbau und Grünland« am 7. Dezember 2023 in Klipphausen OT Groitzsch Programm

09:00 Uhr	Begrüßung Klaus Wallrabe, LfULG
09:15 Uhr	Biologie, Resistenzstatus und Bekämpfungsmöglichkeiten von Weidelgras-Durchwuchs Dr. Ewa Meinlschmidt, LfULG
09:50 Uhr	Erfahrungen der Waldenburger Agrar GmbH mit der Bekämpfung von Weidelgras im Landkreis Zwickau Georg Stiegler, Waldenburger Agrar GmbH & Co. KG
10:15 Uhr	Aktuelles zum Pflanzenschutzrecht Ralf Dittrich, LfULG
10:40 Uhr	PAUSE
11:00 Uhr	Neue Trends bei Entscheidungshilfen zum integrierten Pflanzenschutz Dr. Michael Kraatz, LfULG
11:20 Uhr	Sind die vorgesehenen Restriktionen im Pflanzenschutz wissenschaftlich begründet und praktisch umsetzbar? Prof. Dr. sc. agr. Andreas von Tiedemann, Georg-August Universität Göttingen
12:45 Uhr	Schlusswort Andela Thate, LfULG

Warum steigt die Bedeutung von Weidelgräsern als Unkraut?

Verbreitung und Biologie – Welsches Weidelgras

- Vermehrte Verwendung im Feldfutterbau, Dauergrünland, als Untersaat, als Bestandteil von Begrünungsmischungen
- Grassamenvermehrung (SN)
- Vorkommen in vielen Kulturen als Durchwuchs (Wintergetreide, Raps, Mais, Zuckerrüben)
- Es ist sehr umwelttolerant, Rasche und intensive Entwicklung
- Die Samen verbleiben fast bis zum Erntezeitpunkt an der Pflanze und gelangen
 - somit in die Erntemaschinen
- Überbetrieblicher Einsatz von Mähdreschern (Samenverbreitung)

Beschreibung – Welsches Weidelgras

Systematik

Familie: Süßgräser (*Poaceae*)

Gattung: Lolch (Lolium)

Art: Deutsches Weidelgras

(L. perenne; Syn.: Ausdauerndes Weidel-/Raygras)

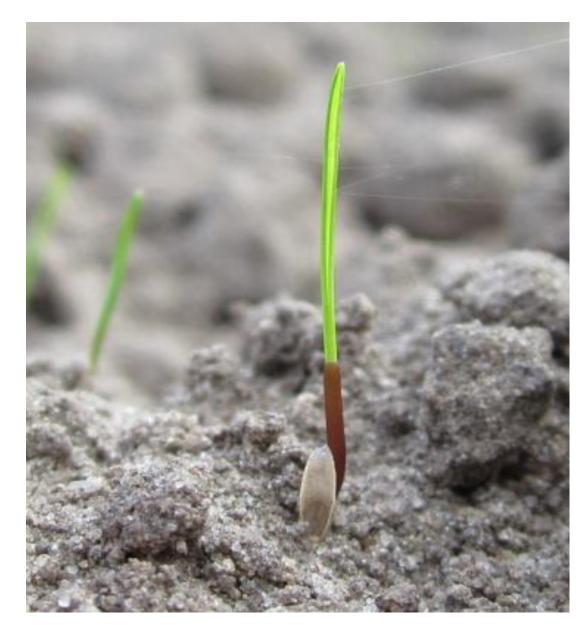
Art: Italienisches Raygras

(L. multiflorum; Syn.: L. italicum; LOLMU)

Welsches-/Vielblütiges-Weidelgras

Var.: Einjähriges Weidelgras

(L. multiflorum var. westerwoldicum)


Hybrid: Bastard-Weidelgras

(L. multiflorum x L. perenne -> L. hybridum)

Welsches Weidelgras - Unterscheidungsmerkmale

Keimblatt gerollt
Triebgrund rötlich gefärbt

Blattöhrchen übergreifend
Blatthäutchen 1-3 mm lang, weiß, glattrandig
geriefte Blattoberseite
Blattunterseite glänzend

Blütenstand:

Ährchen mit der Schmalseite anliegend,
waagerecht abstehend (anders als bei Quecke)

Biologie von Weidelgras (Lolium ssp)

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Freistaat
SACHSEN

Welsches Weidelgras (Lolium multiflorum)

Standort	bevorzugt aber tiefgründige, warme, frische, mittelschwere und nährstoffreiche Böden unter günstigen Niederschlagsverhältnissen.
Keimung	ganzjährig möglich, $60-90$ % keimen aus den oberen $3-5$ cm Hohe Keimtemperatur (min. 10, opt. 15 °C Boden)
Samenlebensdauer im Boden	2 – 3 Jahre, max 5 Jahre
Dormanz (Samenruhe)	Vorhanden, aber aber kürzer als beim Ackerfuchsschwanz, bei Feuchtigkeit keimt ein Großteil der Samen bereits im Herbst
Vermehrung	Fremdbefruchter, hohe Pollenmenge und weiter Pollenflug bis 3 km, ermöglicht schnelle Auskreuzung und Verbreitung von (Resistenzgenen)
Samenpotenzial	Ca. 100 Samen/Ähre, 200 – 1500 Samen je Pflanze
Konkurrenzkraft	groß, schnellwüchsig 20 Pfl./m² LOLMU \rightarrow 50 % Ertragsverlust Weizen (Wintergetreide-Schadensschwelle: 8 Pfl./m²)

Warum steigt die Bedeutung von Weidelgräsern als Unkraut?

Chemische Bekämpfung

- Wenige zugelassene Wirkstoffe stehen zur Verfügung
- Mit zunehmender Entwicklung (>BBCH 20-30) widerstandsfähig gegen eingesetzte Herbizide
- I Sehr rasche Selektion von herbizidresistenten Biotypen
- Multiple Resistenzen (gegen mehrere Wirkmechanismen) sind sehr verbreitet

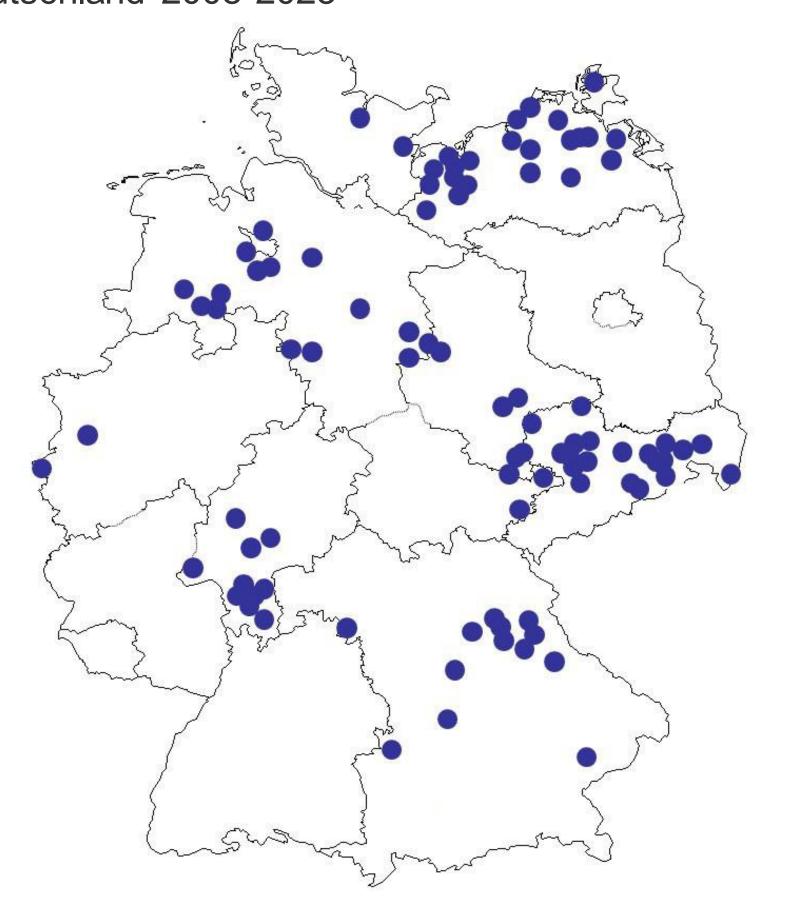
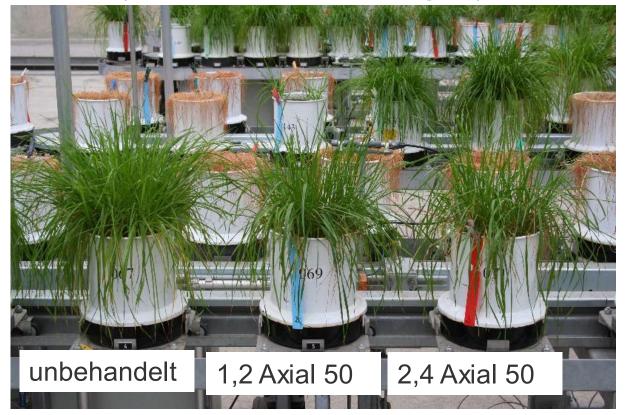
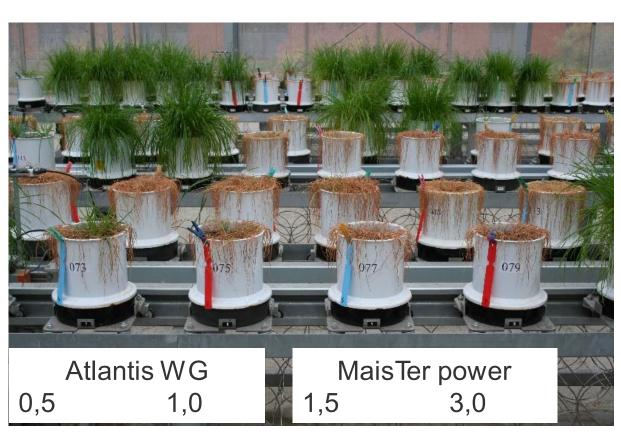


Foto: J. Oaks, LfULG

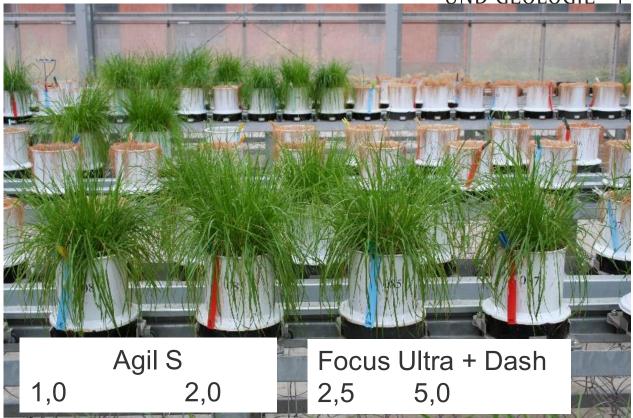
Verbreitung von herbizidresistenten Weidelgräsern in Deutschland 2008-2023

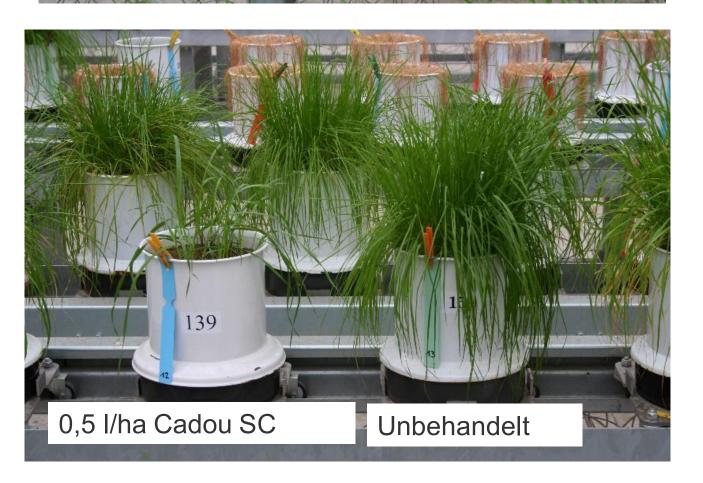


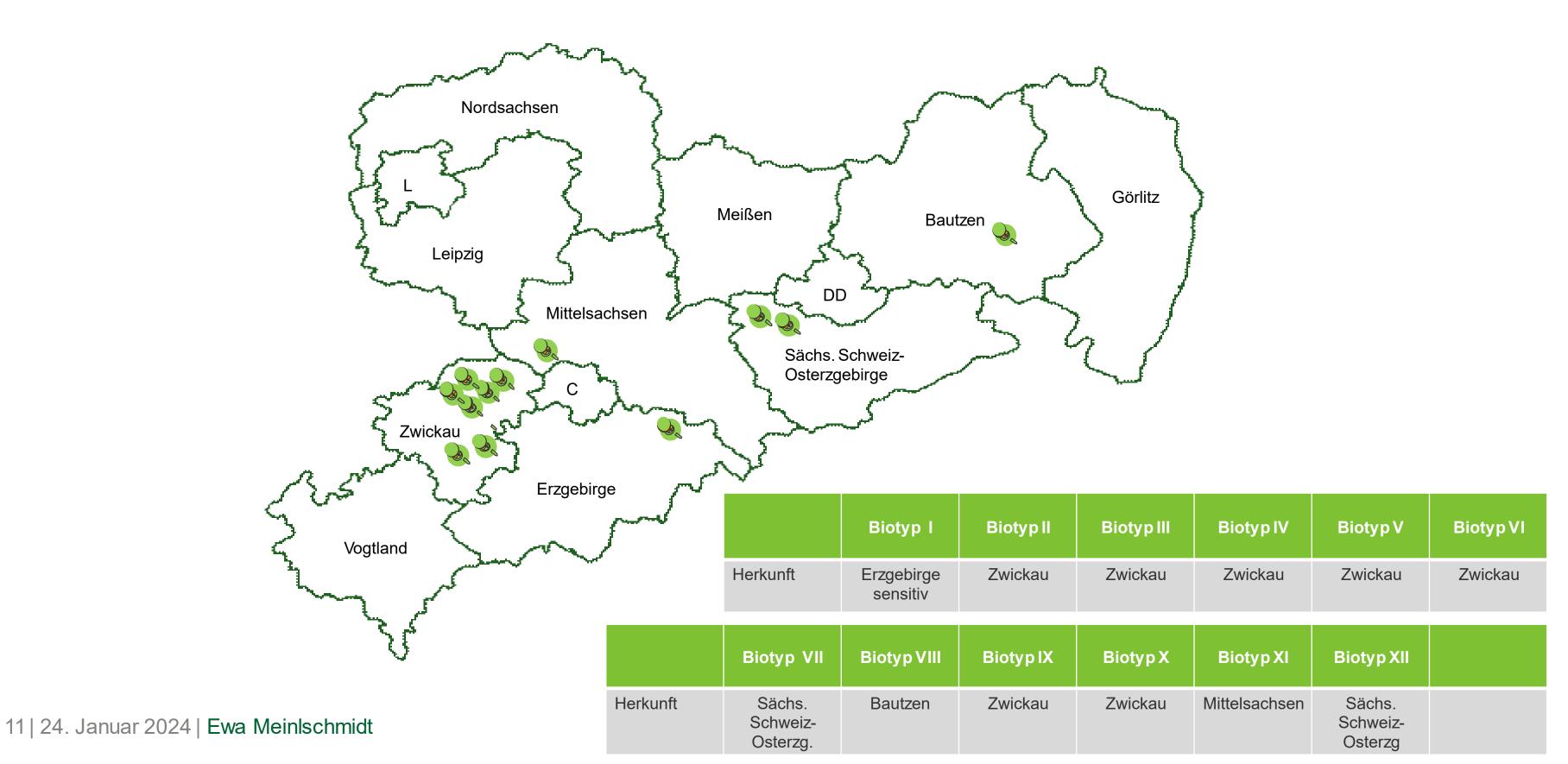

ACCase- oder ALS-Resistenz Zumeist beides

Verdachtsmonitoring über Firma Syngenta, keine Vollständigkeit und nicht repräsentativ Zusammenstelleung J. Petersen HS Bingen

Untersuchung der Weidelgras-Verdachtsroben 2022


Biotest (Gewächshausprüfungen) des LfULG – Biotyp IV

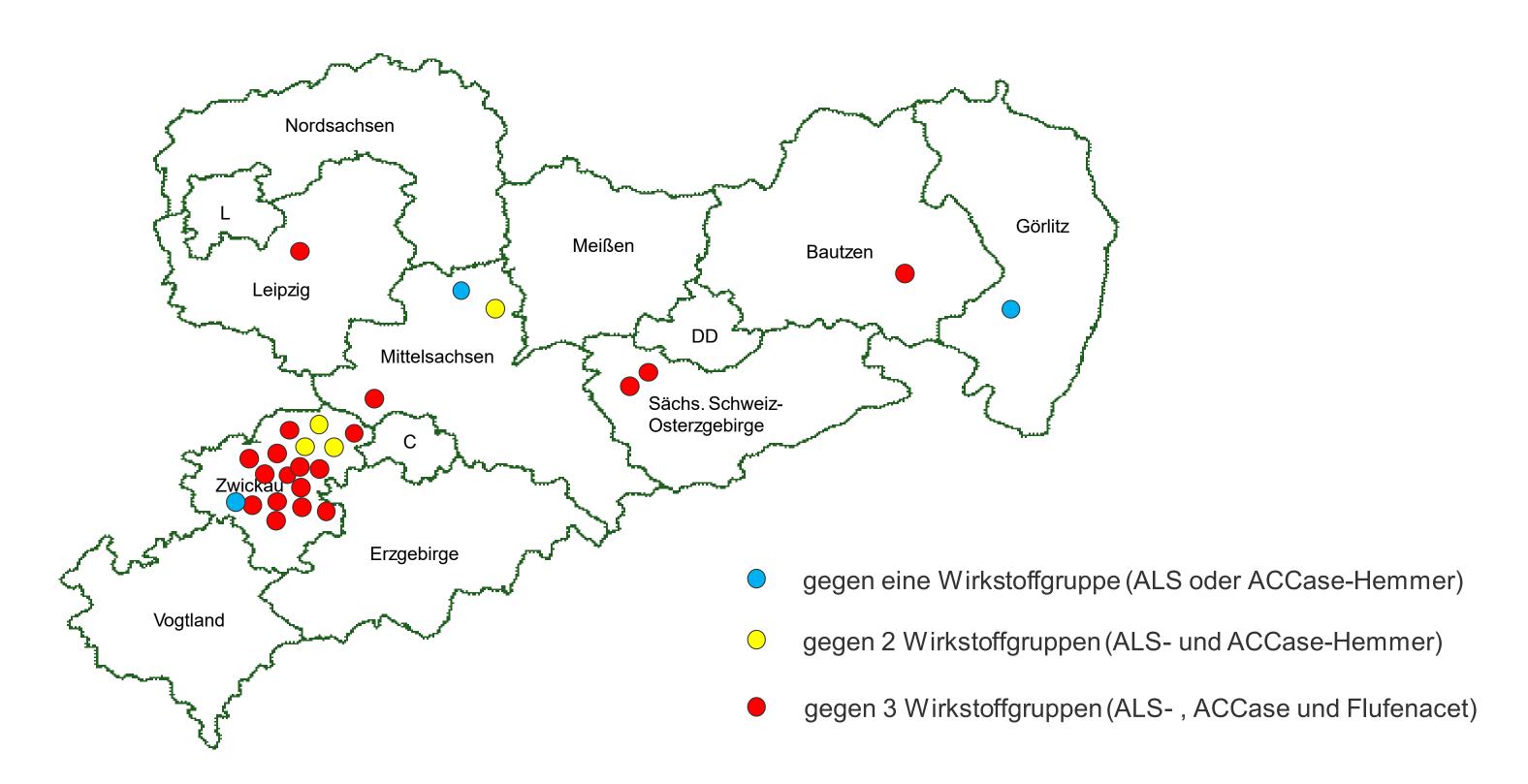




Resistenzuntersuchungen in Sachsen 2023

Weidelgras - Standorte der Verdachtsproben (Samen) von 2023 für Biotest

Untersuchung der Weidelgras-Verdachtsproben 2023


Biotest (Gewächshausprüfungen) des LfULG

	vacristiausprururigeti) ues Ei							LOI	_MU					
Boniturergebniss		Probe:		2	3	4	5	6	7	8	9	10	11	12
02. November 20	23	Ort: Gemeinde:	sensit iv											
Biotest D.A.T.		Landkreis:				ı Zwickaı	u u		SS-	В	Zwi	ckau	MS	SS-
		Aufwandmenge							OE					OE
HRAC-Gruppe	Herbizid	in I bzw. kg/ha						Wirku	ng in %					
1 / A	Axial 50	1,2	S	5	3	5	4	S	4	5	5	5	5	S
1 / A	Axial 50	2,4	S	5	2	3	4	S	2	5	5	5	5	S
2/B	Atlantis Flex + Biopower	0,33 + 1,0	2	5	2	2	4	S	2	5	5	4	4	1
2/B	Atlantis Flex + Biopower	0,66 + 2,0	1	S	2	2	3	S	1	4	5	3	4	S
2/B	Maister Power	1,0	S	S	2	S	S	S	1	S	2	2	S	S
2/B	Maister Power	2,0	S	S	S	S	S	S	S	S	S	S	S	S
1/A/FOP	Agil-S	1,0	S	5	5	5	5	S	5	5	5	5	5	S
1/A/FOP	Agil-S	2,0	S	5	5	5	5	S	5	5	5	5	5	S
1 / A / DIM	Focus Ultra + Dash E.C.	2,5 + 1,0	S	3	2	2	4	S	5	5	5	4	5	S
1 / A / DIM	Focus Ultra + Dash E.C.	5,0 + 1,0	S	S	S	1	1	S	3	5	3	3	4	S
15 / K3	Cadou SC	0,5	S	5	5	2	S	S	3	5	5	4	1	S
15 / K3	Cadou SC	1,0	S	5	5	2	S	S	1	5	3	4	S	S

Resistenzuntersuchungen in Sachsen 2019-2023

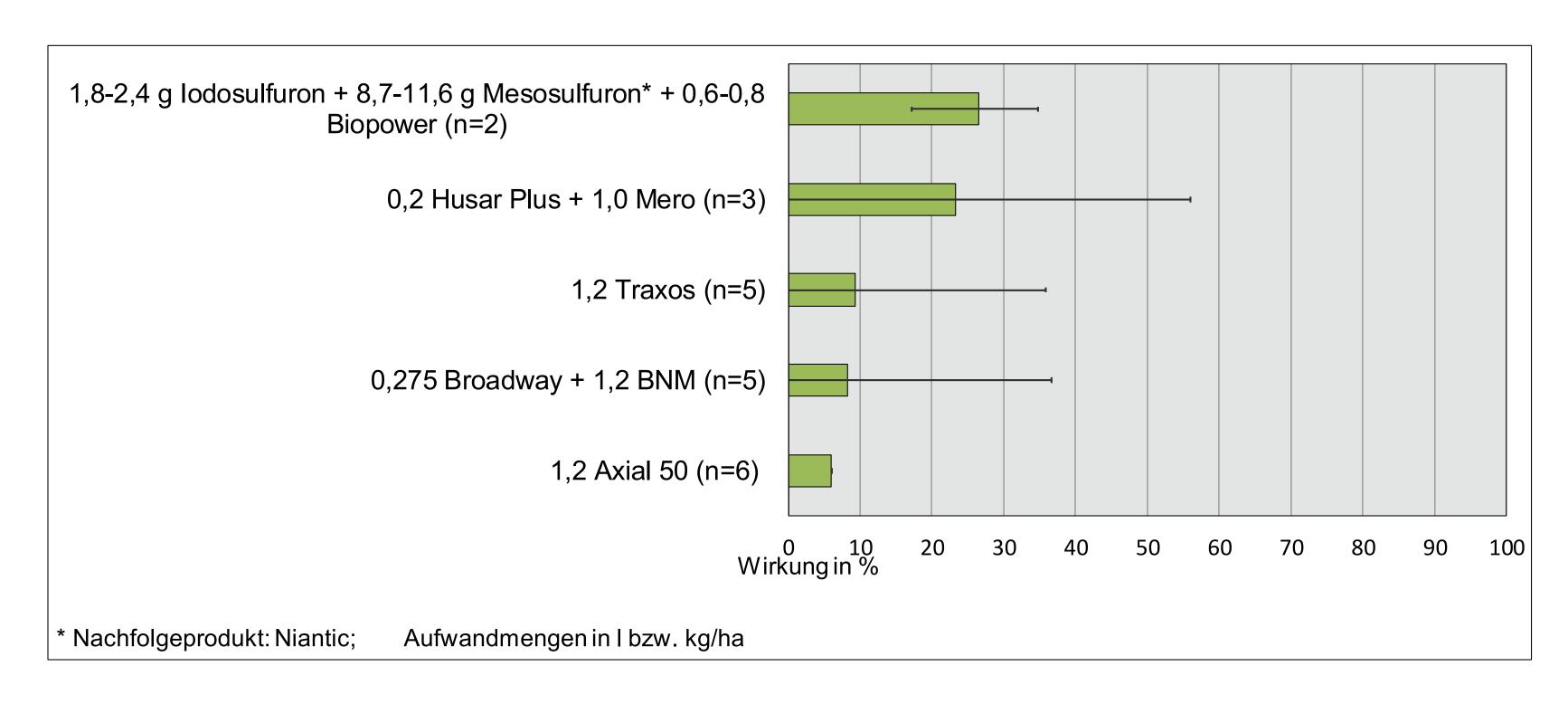
LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE Freistaat SACHSEN

Verdachtsproben mit bestätigter Resistenz

Resistenzuntersuchungen - Zusammenfassung

Weidelgras / Biotest 2019-2023

- Anzahl der Resistenz-Verdachtsproben steigt
- I deutliche Wirkungslücken zeigten sich in den Proben aus Landkreisen Zwickau und Mittelsachsen.
- ACCase-Hemmer (z.B. Axial, Agil-S) und Avoxa (HRAC 1 und 2): nachgewiesene Resistenzen
- ALS-Hemmer (Atlantis WG, Atlantis Flex, Broadway): nachgewiesene Resistenzen
- Focus Ultra (ACCase-Hemmer): uch in einigen Proben unwirksam.
- I multiple Resistenz gegen die Wirkstoffe der Gruppen ACCase- und ALS-Hemmer sowie gegen den Bodenwirkstoff Flufenacet (in Cadou SC)
- MaisTer erste Resistenzen (in 4 Proben)


Weidelgras /molekulargenetische Untersuchungen

- I gegenüber den ACCase-Hemmern Wirkort-Resistenzen (Target-Site-Resistenzen, TSR), Mutationen Ileu 1781, Ileu 2041, Asp 2078
- Gegenüber ALS-Hemmern meistens metabolische Resistenzen

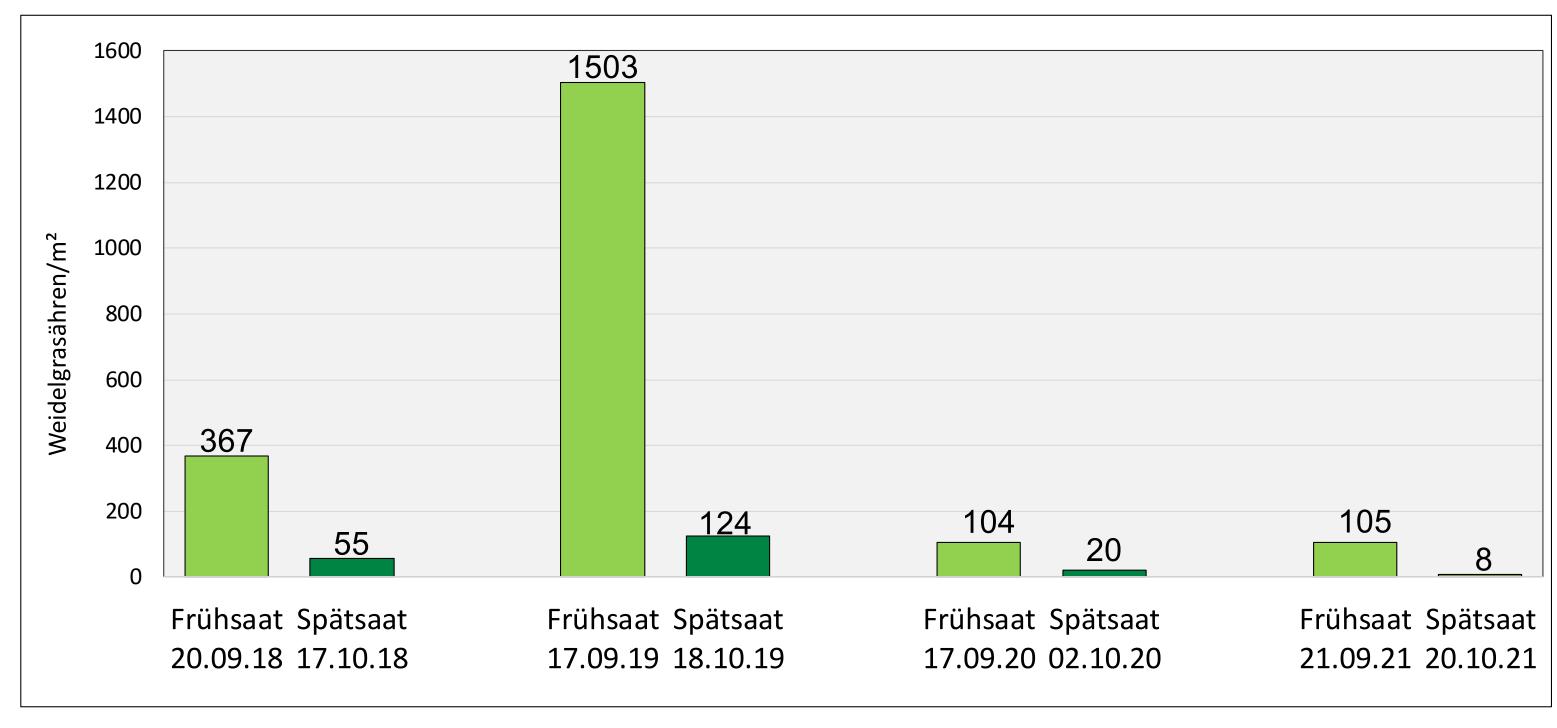
Wirkung von Herbiziden bei Frühjahrsanwendung gegen Weidelgras im Winterweizen

Feldversuche Sachsen und Hessen, 2016-2018 Anzahl der Weidelgrasähren in Unbehandelt kurz vor Ernte: 27-235 Ähren/m² oder 65% DG

Einfluss unterschiedlicher Aussaattermine von Winterweizen auf den Besatz von Weidelgrasdurchwuchs

unbehandelte Kontrollen auf zwei nebeneinanderliegenden Winterweizenschlägen im Vergleich 2 Streulageversuche im Landkreis Zwickau, 4 Wiederholungen, Aufnahme: Juni 2021,

Frühsaat: 104 Ähren/m²

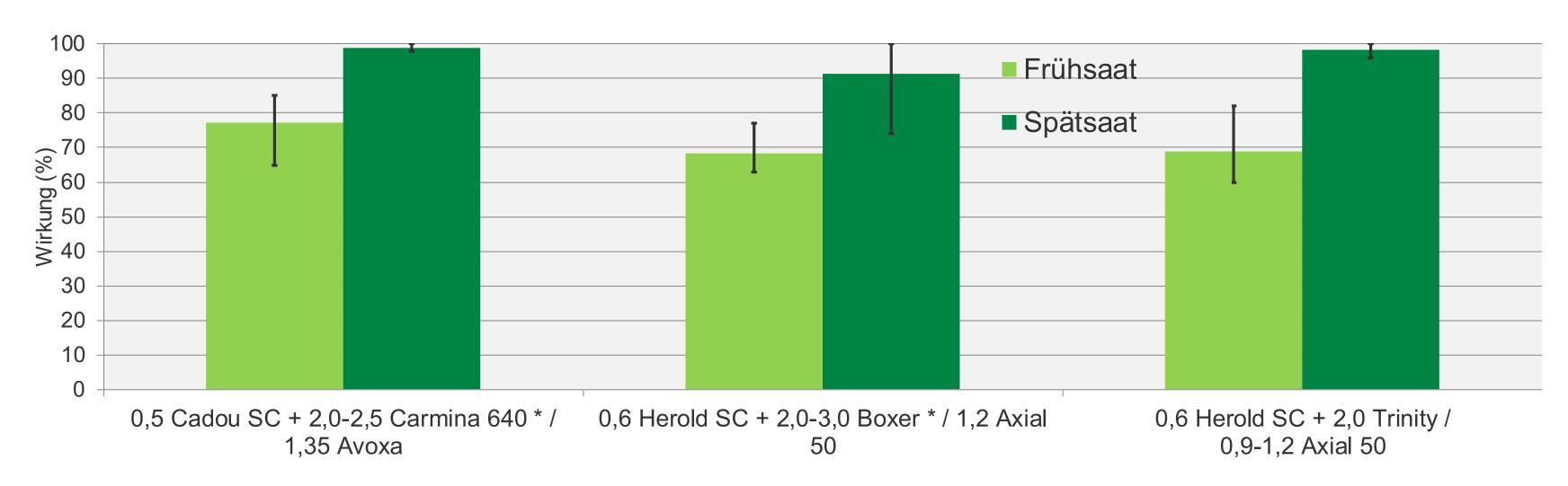

"Spättsaat": 20 Ähren/m² (Mittelwert von 4 Wiederholungen)

Fotos: M. Schindler, LfULG

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE Freistaat SACHSEN

Einfluss unterschiedlicher Aussaattermine von Winterweizen auf den Auflauf von Weidelgrasdurchwuchs Anzahl der Weidelgrasähren/m² kurz vor der Ernte in den unbehandelten Kontrollen

8 Feldversuche auf zwei nebeneinanderliegenden Winterweizenschlägen, Ernte 2019-2022, Landkreis Zwickau



Einfluss der unterschiedlichen Aussaattermine von Winterweizen auf den Auflauf von Weidelgrasdurchwuchs und dessen Bekämpfung

8 Feldversuche Sachsen 2019-2022, Landkreis Zwickau

Weidelgras in unbehandelter Kontrolle kurz vor Ernte: Frühsaat 507 Ähren/m², Spätsaat: 52 Ähren/m²

Aufwandmengen in I/ha bzw. kg/ha;

Frühjahrsbehandlungen erfolgten nur bei der Frühsaat. Im Jahr 2021 gab es auf Grund geringer Besatzdichte keine Nachbehandlungen.

Cadou SC, Carmina 640, Herold SC, Boxer und Trinity haben keine Indikation zur Weidelgrasbekämpfung. Im Rahmen einer Behandlung, z.B. gegen Ackerfuchsschwanz, Gemeinen Windhalm, Einjähriges Rispengras kann eine **Nebenwirkung** auf gleichzeitig vorhandene Weidelgräser erzielt werden.

^{* 2019 2,0} I/ha Carmina 640; ** 2021 3,0 I/ha Boxer

Einfluss der unterschiedlichen Aussaattermine von Winterweizen auf den Besatz von Weidelgrasdurchwuchs

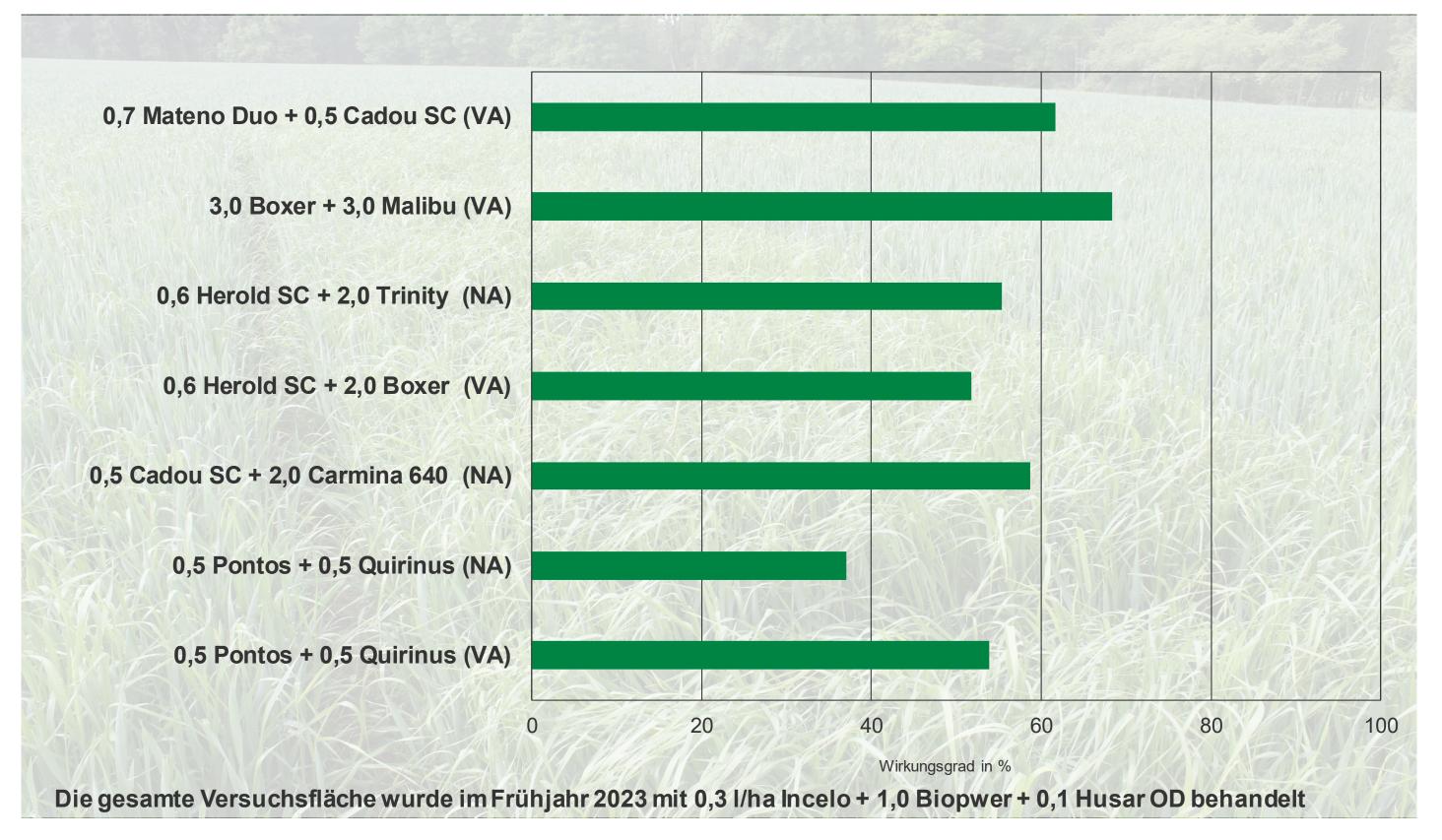
Cadou SC 0,5 l/ha + Carmina 640 2,5 l/ha im Vergleich, 2 Streulageversuche im Landkreis Zwickau, Auszählung Juni 2021

Frühsaat: 16 Ähren/m²

Spätsaat: 0,3 Ähren/m² (Durchschnitt von 4 Wiederholungen)

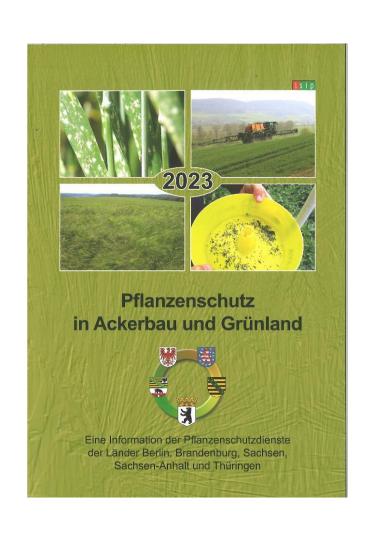
Fotos: M. Schindler, LfULG

Weidelgrasentwicklung im Winterweizen, unbehandelte Kontrolle Versuch im Winterweizen, Landkreis Zwickau, 2023



Mittelwert aus 4 Wiederholungen: 775 Ähren/m² in Unbehandelt, 24.05.2023, sehr starker Besatz, Auflauf auch während des milden Winters?

Bekämpfungsmöglichkeiten von Weidelgras im Winterweizen Feldversuch 2023, Landkreis Zwickau, Aussaat am 13. Oktober 2022


Empfehlungen zur chemischen Bekämpfung von Weidelgras im Wintergetreide im Herbst

Broschüre Pflanzenschutz in Ackerbau und Grünland 2023

- Anwendung von bodenaktiven Herbiziden (im Vorauflauf) in Spritzfolge mit blattaktiven Herbiziden
- Wirkstoffgruppen (HRAC-Klassen) in der Behandlungsfolge regelmäßig wechseln

			(Getre	idea	rt	A	WB	
Herbizid	AWM (I o. kg/ha)	G	W	R	Т	ВВСН	Hang	Drainage Verbot	Kosten (€/ha)
Pontos + Quirinus	0,5 + 0,5	•			•	VA	5		53
i ontos i Quillius	0,5 1 0,5					10-12			33
SF Herbst / Frühjahr:						VA	5		
Pontos + Quirinus / Nachbehandlung im Frühjahr bei Bedarf	0,5 + 0,5 /	•	•	•	•	10-12 / Frühjahr			
SF Herbst / Frühjahr: Quirinus + Lentipur 700 /						VA	20	ja	
Nachbehandlung im Frühjahr bei Bedarf	1,0 + 1,5 /	•	•	•					

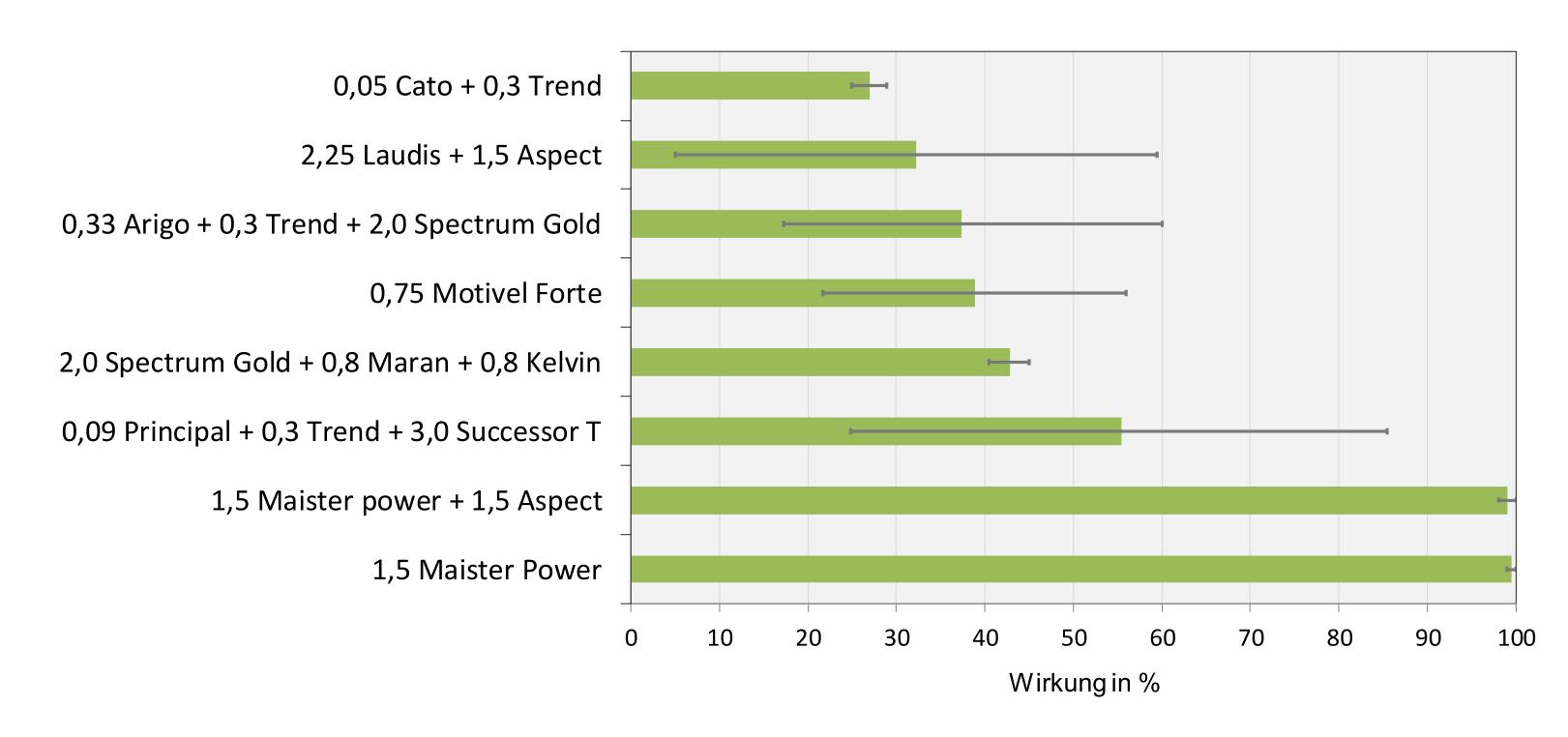
Möglichkeiten zur Bekämpfung von Weidelgras im Wintergetreide im Frühjahr

				G	etre	ideart	A	WB	
Herbizid	AWM (I o. kg/ha)	G	W	R	Т	bis BBCH	Hang	Drainage Verbot	Kosten (€/ha)
WGetreide: Nachbeha Herbizide im Herbst)	ndlung im F	rül	njal	nr (nach	Anwendung	bode	enaktiver	•
Axial 50 ¹⁾	1,2	•	•	•	•	Vegbeginn bis 39			50
Traxos ¹⁾	1,2		•	•	•	31			47
Avoxa ^{1) 2)}	1,35		•	•	•	32			41
Broadway ²⁾ + Netzmittel	0,275 + 1,0		•	•	•	30			71
Husar Plus ²⁾ + Mero	0,2 + 1,0		•	•	•	32		bis 15.03.	39
Atlantis Flex ²⁾ + Biopower	0,33 + 1,0		•		•	21 - 32	10	bis 15.03.	60
Incelo ²⁾ + Biopower + Husar OD ²⁾	0,3 + 1,0 + 0,1		•		•	20 - 32	20	bis 15.03.	87
SGetreide									
Axial 50 ¹⁾	1,2	•	•			39			50

Pflanzenschutz
in Ackerbau und Grünland

Eine Information der Pflanzenschutzdienste
der Länder Berlin, Brandenburg, Sachsen,
Sachsen-Anhalt und Thüringen

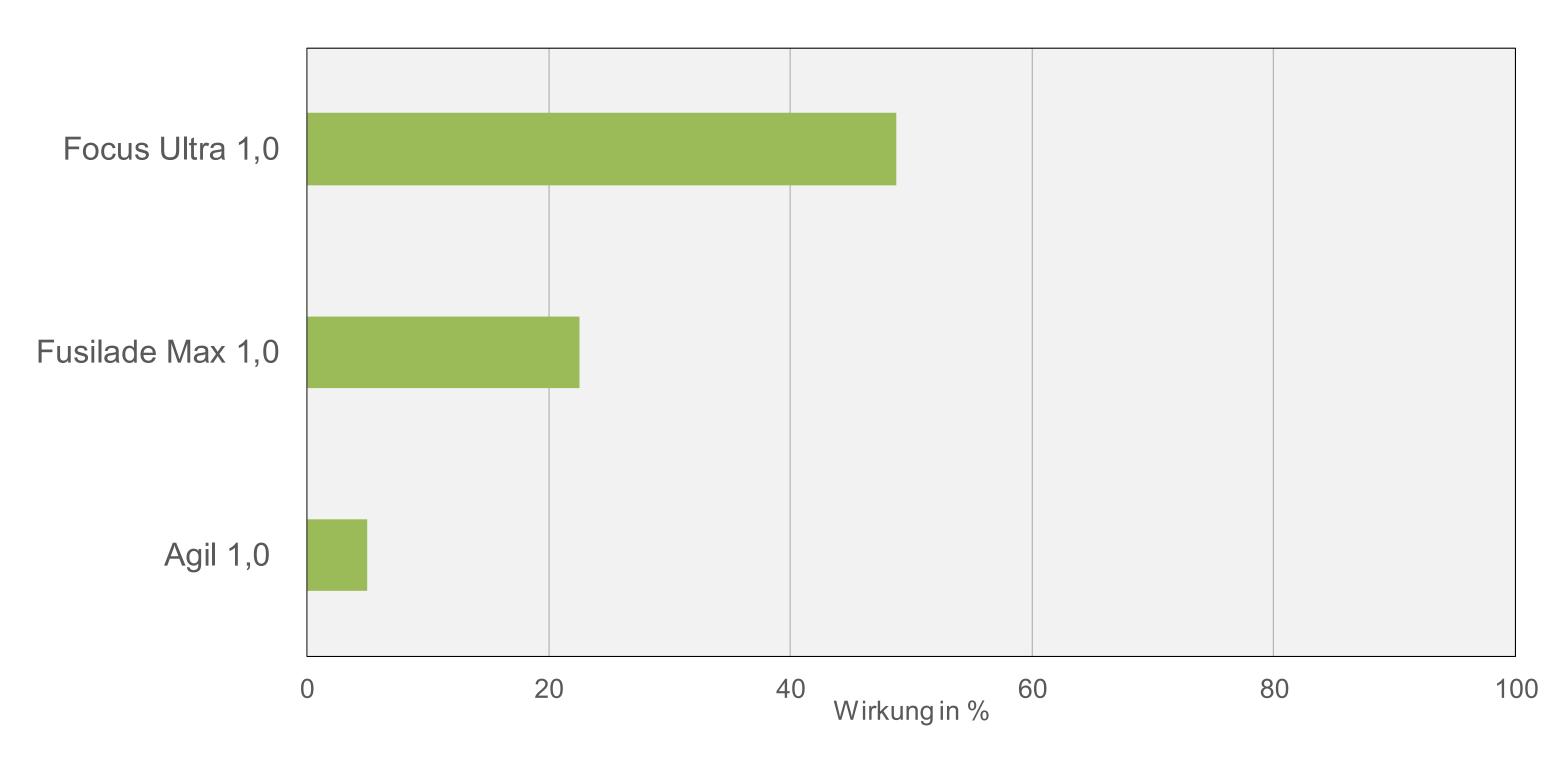
¹⁾ nicht bei HRAC 1 Resistenz; 2) nicht bei HRAC 2 Resistenz


Foto: M. Schindler, LfULG

Freistaat SACHSEN

Wirkung von Herbiziden auf Weidelgras im Mais

3 Feldversuche 2016 - 2017, Sachsen und Hessen (n = 2 bis 3) Deckungsgrad in unbehandelten Kontrollen: SN: 70 %, HE: 18 Pfl./m2

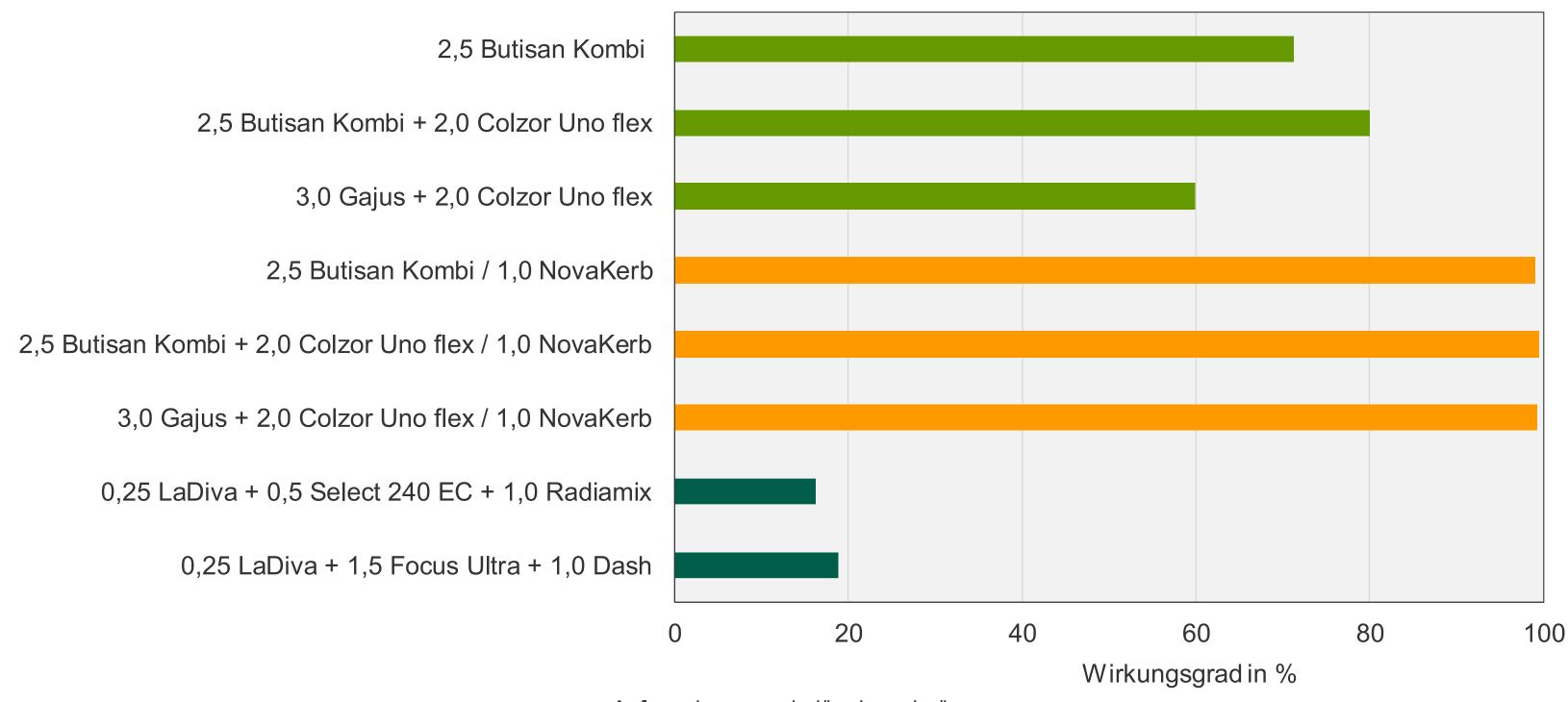

Wirkung von Gräserherbiziden (%) gegen Deutsches Weidelgras in Zuckerrüben

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

Freistaat
SACHSEN

Feldversuch 2016 Sachsen, Landkreis Mittelsachsen

Bonitur 16.06.2016



Wirkung von bodenaktiven Herbiziden solo und als Spritzfolge sowie von blattaktiven Tankmischungen auf Weidelgras im Winterraps

Feldversuch auf dem Resistenzstandort, Sachsen, Landkreis Zwickau, 2023 Weidelgras-Deckungsgrad in Unbehandelt (Mittelwert von 4 Wiederholungen) am 02.05.2023 von 30%

Resistentes Weidelgras in der unbehandelten Kontrolle, Feldversuch 2023, Landkreis Zwickau

*NovaKerb (Propyzamid, Halauxifen-methyl): Weiterentwicklung von Kerb flo

Fotos 20.04.2023, M. Schindler, LfULG

Weidelgras - Management

- I Ackerbauliche Maßnahmen sollen integriert werden, z.B.
 - Weitere Fruchtfolgen
 - Winterraps
 - Sommergerste
 - Mais
 - Mehrfache Stoppelbearbeitung (Witterung!)
 - Altpflanzen zerstören
 - I Grundbodenbearbeitung (Pflugfurche), einmal in der Fruchtfolge
 - Samenpotenzial vergraben
 - I Falsches Saatbett? (keine Versuchsergebnisse)
 - I Spätere Aussaattermine von Wintergetreide
- Feldhygiene
 - Reinigung von Mähdrescher vor dem Umsetzen auf benachbarte Felder
 - I Kein Weidelgras in Begrünungen (Samenbildung!)

Folge von starken Niederschlägen im März/April 2023 Aufnahme am 20.04.2023

Prüfung auf Herbizidresistenzen in unterschiedlichen Herkünften von Welschem Weidelgras (HB96-213850-2019_No) gegenüber blattaktiven Herbiziden

- Durchführung eines Ringversuch mit Beteiligung des Bundeslandes Hessen
- Es kommen gegen Weidelgras wirksame Herbizide in Getreide, Raps, Zuckerrüben zum Einsatz
- Die Festlegung der Behandlungen erfolgte gemeinsam mit dem Pflanzenschutzdienst Hessen
- Bei ungenügenden Wirkungsgraden wird von einer Resistenz beim Saatgut ausgegangen
- Anlage einer Versuchsanlage auf dem Pflanzenschutzprüffeld in Nossen
- Auswahl von 24 Herkünften von Welschem Weidelgras
- eine unbehandelte Kontrollparzelle pro Sorte
- Auswahl von 5 verschiedenen Herbizidvarianten, davon 4 Herbstbehandlungen und eine Frühjahrsbehandlung

Zusammenfassung:

24 geprüften Herkünfte wurden als unauffällig gegen Resistenz eingestuft.

Prüfung auf Herbizidresistenz verschiedener Sorten-Herkünfte von Welschem Weidelgras auf dem PS-Prüffeld in Nossen gegenüber blattaktiven Herbiziden, 2019

Übersicht der 24 Weidelgrasherkünften

	Fruchtart	Sortenname	Ploidie	Herkunft	Erntejahr	Vermehrernummer
1	WWeidelgras	DS Ronaldo	Т	Blankenhain, Crin	2016	243248
2	WWeidelgras	Elvis	Т	Oberschöna	2016	251637
3	WWeidelgras	Lipsos	Т	Großschirma	2016	237237
4	WWeidelgras	Jeanne	Т	Oberbobritzsch	2016	237337
5	WWeidelgras	Sentinel	Т	Fuchshain	2016	362267
6	WWeidelgras	Mustela	D	Oederan	2016	252736
7	WWeidelgras	Mondora	Т	Großpösna	2016	389529
8	WWeidelgras	Montblanc	Т	Leubsdorf	2016	235336
9	WWeidelgras	Fedra	Т	Mutzschen	2015	379167
10	WWeidelgras	Fedra	Т	Trebsen	2016	392729
11	WWeidelgras	Tetraflorum	Т	Oberwiera (Zwick	2018	
12	WWeidelgras	Bartrento	Т	Thüringen/Knau	2016	160302613
13	WWeidelgras	Barextra	Т	Chemnitz	2016	230735
14	WWeidelgras	Meroa	Т	Weißenberg	2016	100801
15	WWeidelgras	Teanne	Т		2018	
16	WWeidelgras	Melmia	Т	Neukirchen-Laute	2016	243448
17	WWeidelgras	Barmultra II	Т	Klausnitz	2016	231735
18	WWeidelgras	Dorike	Т	Chemnitz-Mittelba	2017	265411
19	WWeidelgras	Balance	D	Oederan / OT Bre	2017	247536
20	WWeidelgras	Fabio	Т	Hainichen	2017	232339
21	WWeidelgras	Nabucco	Т	Wilsdruff / OT Gro	2017	106005
22	WWeidelgras	Subtyl	D	Neukirchen-Adorf	2017	263147
23	WWeidelgras	Melquatro	Т		2018	
24	WWeidelgras	Barultima	Т		2018	

40 kg/ha (bei tetraploiden Sorten) 30 kg/ha (bei diploiden Sorten)

Parzellengröße = 30 m² Aussaatgröße = 39 m²

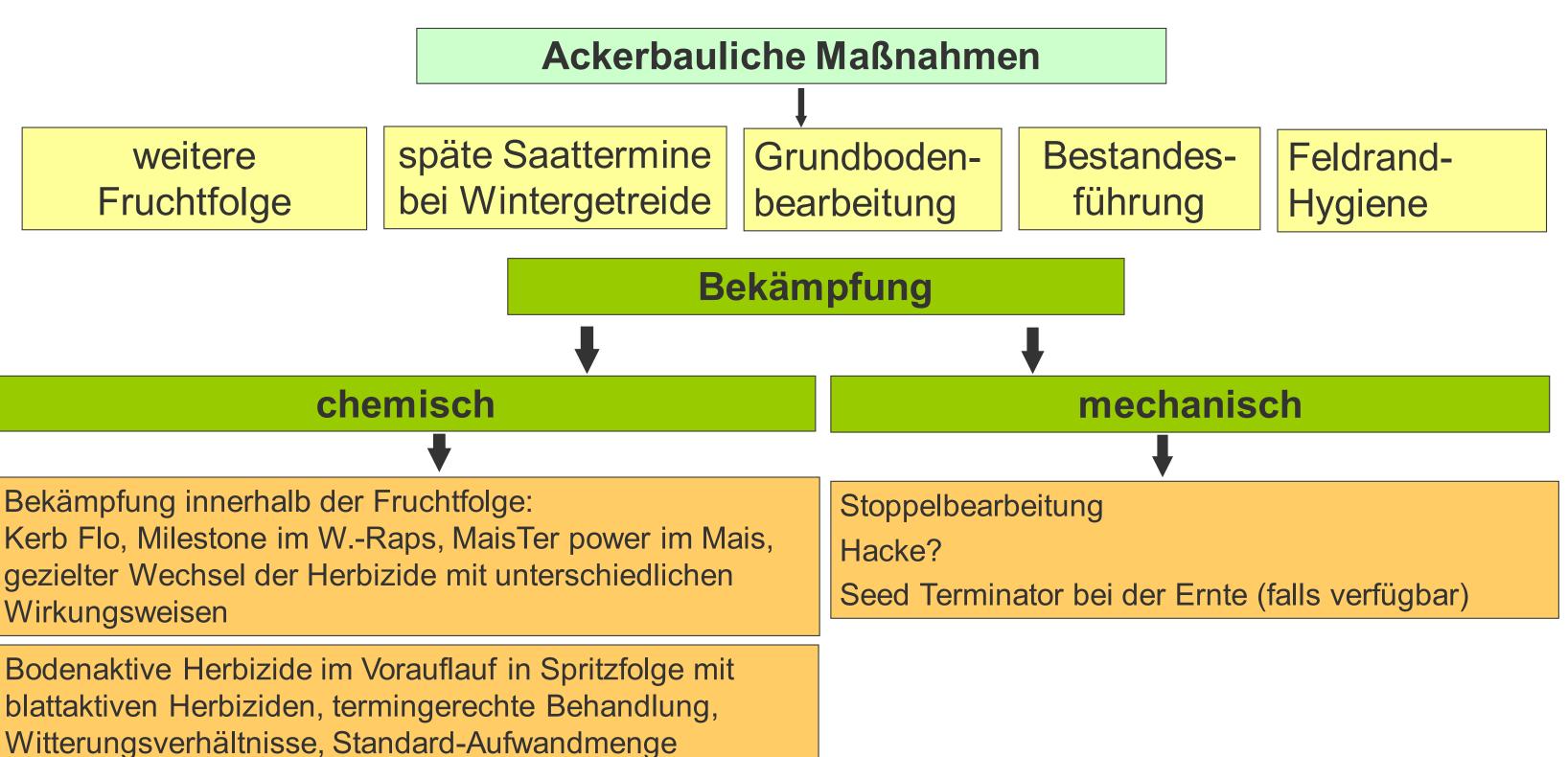
T-Sorten 156 g/ Parzelle D-Sorten 117 g/ Parzelle

Prüfung auf Herbizidresistenz verschiedener Sorten-Herkünfte von Welschem Weidelgras (Streifenanlage)

Wirkungsbonituren mit Schätzwerten der Wirkungsgrade zu Unbehandelt in %

Wirkungsbonitu	ır 6 Wc	ochen	nach	der F	rühjal	nrsap	plikati	on				
BBCH 37-39-49 M.Ullrich	Sorte 13	Sorte 14	Sorte 15	Sorte 16	Sorte 17	Sorte 18	Sorte 19	Sorte 20	Sorte 21	Sorte 22	Sorte 23	Sorte 24
way + NM 75 + 1,2	63	67	65	72	63	67	58	56	62	62	52	52
Select 240 EC + Radiamix 0,5 + 1,0	100	100	100	100	100	100	100	100	100	100	100	100
Agil-S 1,0	100	100	100	100	99	100	100	100	99	100	100	100
Axial 50 0,9	99	99	99	98	99	99	99	100	99	98	100	99
Atlantis WG + FHS 0,4 + 0,8	99	100	99	99	99	99	99	99	99	99	99	100
. Unbehandelt												
Broadway + NM												
0,275 + 1,2	54	63	58	66	73	53	63	60	65	56	72	66
Radiamix 0,5 + 1,0	100	100	100	100	100	100	100	100	99	100	99	100
Agil-S 1,0	100	100	100	100	100	100	100	100	100	100	100	100
Axial 50 0,9	100	99	99	99	98	98	99	98	100	100	100	100
Atlantis WG + FHS 0,4 + 0,8	100	99	99	100	99	99	99	99	100	100	99	SF
. Unbehandelt												
	Sorte 1	Sorte 2	Sorte 3	Sorte 4	Sorte 5	Sorte 6	Sorte 7	Sorte 8	Sorte 9	Sorte 10	Sorte 11	Sorte

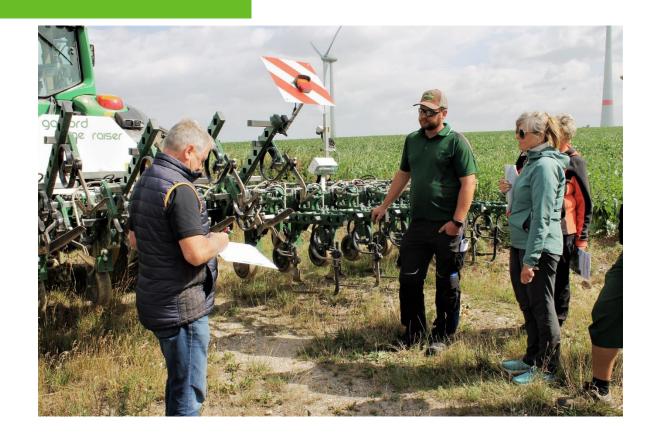
Zusammenfassung: die 24 geprüften Herkünfte wurden als unauffällig gegen Resistenz eingestuft.


Weidelgras-Management

Neue Wirkstoffe im Zulassungsverfahren:

Cinmethylin (Luximo), HRAC 30/Q, Getreide

Bixlozone (Isoflex), (HARAC13/F4), Getreide, Raps, Mais



Vielen Dank für Ihre Aufmerksamkeit!

